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ABSTRACT

Childhood maltreatment may adversely affect brain development and consequently influence behavioral,11

emotional, and psychological patterns during adulthood. In this study, we propose an analytical pipeline12

for modeling the altered topological structure of brain white matter in maltreated and typically13

developing children. We perform topological data analysis (TDA) to assess the alteration in the global14

topology of the brain white-matter structural covariance network among children. We use persistent15

homology, an algebraic technique in TDA, to analyze topological features in the brain covariance16

networks constructed from structural magnetic resonance imaging (MRI) and diffusion tensor imaging17

(DTI). We develop a novel framework for statistical inference based on the Wasserstein distance to assess18

the significance of the observed topological differences. Using these methods in comparing maltreated19

children to a typically developing control group, we find that maltreatment may increase homogeneity in20

white matter structures and thus induce higher correlations in the structural covariance; this is reflected in21
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the topological profile. Our findings strongly suggest that TDA can be a valuable framework to model22

altered topological structures of the brain. The MATLAB codes and processed data used in this study can23

be found at https://github.com/laplcebeltrami/maltreated.24

AUTHOR SUMMARY

We employ Topological Data Analysis (TDA) to investigate altered topological structures in the white25

matter of children who have experienced maltreatment. Persistent homology in TDA is utilized to26

quantify topological differences between typically developing children and those subjected to27

maltreatment, using MRI and DTI data. The Wasserstein distance (WD) is computed between topological28

features to assess disparities in brain networks. Our findings demonstrate that persistent homology29

effectively characterizes the altered dynamics of white matter in children who have suffered30

maltreatment.31

INTRODUCTION

Child maltreatment can have severe life-long mental, emotional, physical, and sexual health outcomes32

(WHO, 2022). These serious long-term consequences are notable given that the U.S. Department of33

Health and Human Services estimates over 680,000 children suffer different forms of maltreatment, such34

as child abuse or neglect every year. Many of the adverse impacts likely emerge through changes in35

neurobiology, such as reduced brain volumes and altered brain connectivity (Herringa et al., 2013).36

Indeed, a growing body of scientific research has found altered brain functioning in those who have37

suffered early childhood abuse and neglect (Hanson et al., 2010; McCrory, De Brito, & Viding, 2010;38

Shonkoff et al., 2012; Wilson, Hansen, & Li, 2011). Multiple studies have shown that maltreatment in39

childhood can lead to a decrease in the volume of the corpus callosum, the largest white matter structure40

in the brain, which is critical for interhemispheric communication (McCrory et al., 2010; Wilson et al.,41

2011). Similarly, neglected children tend to have smaller prefrontal cortex volumes, which play a role in42

regulating behavior, emotion, and cognition (NSCDC, 2010a; USDHHS, 2010). These neurological43

changes, especially those in brain connectivity, may profoundly influence children’s emotional, social,44

and behavioral functioning (Hostinar, Stellern, Schaefer, Carlson, & Gunnar, 2012; USDHHS, 2010).45
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Both structural MRI and diffusion MRI facilitate studies on the impact of abuse and neglect on brain46

development during childhood (Hanson et al., 2012; Jackowski, De Araújo, De Lacerda, de Jesus Mari,47

& Kaufman, 2009; Loman et al., 2013; Pollak, 2008). Tensor-based morphometry (TBM) serves as a48

powerful tool to quantify the variations in neuroanatomical structures by analyzing the spatial derivatives49

of deformation fields. These fields are obtained via nonlinear image registration techniques that warp50

individual structural MRI scans to a common template (M. K. Chung et al., 2001; Thompson et al.,51

1998). The Jacobian determinant, derived from this warping process, measures the volumetric changes in52

brain tissue at the voxel level (Davatzikos et al., 1996; Dubb, Gur, Avants, & Gee, 2003; Machado &53

Gee, 1998). For each voxel, a linear model is set up to use tensor maps, such as the Jacobian determinant,54

as a response variable for obtaining voxel-level statistics. Although univariate TBM has been widely55

utilized (M. K. Chung et al., 2001; Thompson & Toga, 1998), its limitations emerge when hypothesis56

testing extends to multiple anatomical brain regions; it may not adequately capture the inter-relationships57

between volume changes in different voxels. This gap underscores the need for a network analysis58

approach to model the Jacobian determinant, linking variations in one region to another through59

structural covariance (Cao & Worsley, 1999; He, Chen, & Evans, 2008, 2007; J. P. Lerch et al., 2006;60

Rao, Aljabar, & Rueckert, 2008; K. J. Worsley, Charil, Lerch, & Evans, 2005; K. J. Worsley, Chen,61

Lerch, & Evans, 2005).62

Keith J. Worsley laid the foundation for modeling structural covariance using cortical thickness63

obtained from T1-MRI in 2005 (J. Lerch et al., 2006; K. Worsley, Charil, Lerch, & Evans, 2005;64

K. J. Worsley, Charil, et al., 2005; K. J. Worsley, Chen, et al., 2005). Worsley’s contributions were65

instrumental in framing the concept of structural covariance as the statistical association between66

morphological characteristics of different brain regions. His work inspired a wealth of research that67

employed statistical models to quantify these associations. After Worsley’s initial contributions, the field68

saw significant developments with greater sophistication (He et al., 2008, 2007; J. P. Lerch et al., 2006).69

In early 2010’s, studies began to explore the application of structural covariance in various neurological70

and psychiatric conditions, such as Alzheimer’s disease (AD), schizophrenia, and developmental71

disorders including fragile X syndrome (Cao & Worsley, 1999; Rao et al., 2008; Saggar et al., 2015).72

(DuPre & Spreng, 2017) used the gray matter probability map obtained from the SPM package in73

modeling the lifespan of structural covariance networks in the normal population. These studies often74
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employed machine learning and network theory to create more complex models that could capture the75

intricate relationships between different brain regions. Most recently, the notion of structural covariance76

has been integrated into multimodal imaging studies, which combine different types of neuroimaging77

data to provide a more comprehensive view of brain structure and function (M. Chung, Hanson, Ye,78

Davidson, & Pollak, 2015; Davatzikos et al., 1996; Machado & Gee, 1998).79

Graph theory based methods have been frequently used to uncover the topological properties of brain80

networks including the investigation of topological alterations in white matter for neuromyelitis optica81

(Y. Liu et al., 2012), exploring abnormal topological organization in the structure of cortical networks in82

AD (Lo et al., 2010), alterations in the topological properties of the anatomical network in early83

blindness (Shu et al., 2009), abnormal topological changes during AD progression (Daianu et al., 2015;84

Kuang et al., 2020; T. Qiu et al., 2016). Graph theory also has been used to measure and evaluate the85

integration and segregation of the brain network (Kuang et al., 2020; Rubinov & Sporns, 2010). In the86

standard graph theory based brain network analysis, graph features such as node degrees and clustering87

coefficients are obtained after thresholding connectivity matrices (M. K. Chung, 2019; M. K. Chung et88

al., 2017; Van Wijk, Stam, & Daffertshofer, 2010). Depending on the choice of these thresholds, the final89

statistical results can be drastically different (M. K. Chung et al., 2013; M. K. Chung, Hanson, Ye,90

Davidson, & Pollak, 2015; H. Lee, Kang, Chung, Kim, & Lee, 2012). Thus, there is a practical need to91

develop a multiscale network analysis framework that provides a consistent result and interpretation92

regardless of the choice of thresholding. Persistent homology offers one possible solution to the93

multiscale problem (Carlsson & Mémoli, 2008; M. K. Chung et al., 2013; M. K. Chung, Singh, Kim,94

Dalton, & Davidson, 2009; Edelsbrunner, Letscher, & Zomorodian, 2000; Ghrist, 2008; H. Lee, Chung,95

Kang, Kim, & Lee, 2011; H. Lee et al., 2012; Singh et al., 2008).96

Persistent homology has gained popularity for its capability to analyze high dimensional feature spaces97

without model assumptions (M. K. Chung et al., 2009; Edelsbrunner et al., 2000; Ghrist, 2008; H. Lee et98

al., 2011). Instead of studying networks at a fixed scale, persistent homology summarizes the changes of99

topological features over different scales and finds the most persistent topological features that are robust100

to perturbations (M. Chung, Lee, DiChristofano, Ombao, & Solo, 2019). This robust performance under101

different scales is needed for network models that are parameter and scale dependent. In persistent102

homology, instead of building networks at one fixed parameter that may not be optimal (Edelsbrunner,103
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Harer, et al., 2008; Ghrist, 2008), we analyze the collection of networks over every possible thresholds104

(H. Lee et al., 2011, 2012). It has been shown that the persistent homology approach can be effectively105

used to overcome the problem related to the arbitrariness of thresholding (D. S. Lee, 2019). Persistent106

homology can detect subtle topological differences between networks while existing statistical models107

might fail to differentiate the differences (A. Qiu, Lee, Tan, & Chung, 2015; Solo et al., 2018; Zhu, Suk,108

& Shen, 2014). In (C. Liu et al., 2021), persistent homology has been applied to characterize the109

neuropsychological properties of the brain. In (Xing, Jia, Wu, & Kuang, 2022), persistent homology has110

been used to study the evolution of a spatiotemporal brain network of Alzheimer’s disease (AD). They111

have also proposed that persistent homology can be considered as a framework to assess the112

neurophysiological properties of image quality. Topological data analysis (TDA) has been applied to113

brain networks to classify altered brain states (Caputi, Pidnebesna, & Hlinka, 2021). TDA also has been114

used to extract the topology of brain connectomes in attention deficit hyperactivity disorder (ADHD)115

(Gracia-Tabuenca, Dı́az-Patiño, Arelio, & Alcauter, 2020). TDA also found applications in EEG signal116

analysis (Khalid, Kim, Chung, Ye, & Jeon, 2014; Piangerelli, Rucco, Tesei, & Merelli, 2018; Wang,117

Ombao, & Chung, 2019).118

Various topological feasters and embedding have been developed. The persistence diagram (PD)119

serves as an indicator, displaying the birth and death times of holes or cycles as the scale changes.120

Important topological invariants, known as Betti numbers, count the number of holes in networks and can121

be used to visualize and quantify underlying topology. Betti curves, which plot these Betti numbers over122

changing scales, have been employed to detect abnormal functional brain networks in the study of123

Alzheimer’s Disease (AD) progression (Kuang et al., 2020). Furthermore, a variety of quantitative124

persistent homology features exist, such as persistence landscapes (PL) (Bubenik & Dłotko, 2017),125

persistent entropy (PE) (Rucco, Castiglione, Merelli, & Pettini, 2016), and persistence images (PI)126

(Adams et al., 2017). These features have been utilized to analyze and compare brain networks across127

different patients (Caputi et al., 2021). Mapper is another commonly used TDA technique, particularly128

useful for simplifying high-dimensional data into network representations by providing insights into the129

clustering and connectedness of data points in a feature space (Patania et al., 2019; Saggar et al., 2018).130

Mapper can be effective in capturing the network modularity and revealing the hierarchical organization131

of functional brain connectivity (Patania et al., 2019). (Saggar et al., 2018) used Mapper to construct the132
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low-dimensional representations of temporally changing task fMRI brain networks. (Petri et al., 2014)133

introduces the clique filtration in building homological scaffolds that serve as the backbone for134

understanding the topological organization of fMRI brain networks. These tools are particularly useful in135

capturing the intricate higher-order topological features, such as loops and voids, that are often not136

readily accessible in existing methods.137

In this study, we use TDA to investigate alterations in the white matter structures of children who have138

experienced maltreatment. Utilizing both T1-MRI and DTI scans, we focus on the structural covariance139

of the brain’s white matter. Techniques from persistent homology are employed to characterize these140

changes, specifically using the Jacobian determinant from tensor-based morphometry (TBM) and141

fractional anisotropy (FA) values from DTI. Unlike univariate-TBM, persistent homology enables us to142

examine more intricate network hypotheses, capturing subtle variations across voxels. We quantify these143

topological properties using Betti curves and apply the Wasserstein distance to differentiate between144

maltreated and control groups. This methodology allows us to robustly characterize topological145

structures at multiple scales. Our results reveal that maltreated children exhibit significant alterations in146

white matter topology compared to controls, including a lower number of connected components,147

suggesting less heterogeneous white matter structures.148

METHODS

Figure 1 displays the overall pipeline for group level network analysis. Even though the method is149

applied to structural covariance networks, it works for any type of networks as long as the networks are150

represented as weighted graphs.151

Birth and death decomposition157

In this study, we represent a brain network as weighted graph G = (V,w), where V = {1, 2, . . . , q} is the

node set and w = (wij) denotes edge weights, yielding r = (q2 − q)/2 total edges (H. Lee et al., 2012;

Petri et al., 2014). The weighted graph can be treated as simplicial complexes (Edelsbrunner & Harer,

2022; A. J. Zomorodian, 2005). One commonly used simplicial complex is the Rips complex Rϵ, defined

as consisting of k-simplices formed by k + 1 nodes within distance ϵ (Ghrist, 2008). For a graph with q

nodes, the Rips complex can contain simplices up to dimension q − 1. Then the hierarchical nesting
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Figure 1. Proposed topological inference pipeline for analyzing structural covariance networks. Given two weighted graphs G1, G2, we first perform the

birth-death decomposition and partition the edges into sorted birth and death sets (section ). The 0D topological distance between birth values quantifies

discrepancies in connected components (section ). The 1D topological distance between death values quantifies discrepancies in cycles. Topological inference

is based on the ratio of between-group distance lB to within-group distance lW (section ). Statistical significance on the ratio ϕ = lB/lW is assessed using

the transposition test, a scalable online permutation test.

152

153

154

155

156

structure called the Rips filtration is induced by the Rips complex:

Rϵ0 ⊂ Rϵ1 ⊂ Rϵ2 ⊂ . . .

where 0 = ϵ0 < ϵ1 < ϵ2 < . . . are called the filtration values. When the number of nodes becomes large,158

the Rips complex becomes very dense and often causes serious computational bottlenecks in159

computationally demanding tasks such as the permutation test. For this reason, we propose to use the160

graph filtration, a special case of Rips filtration restricted to 1-skeleton (H. Lee et al., 2011, 2012).161

Define the binary graph Gϵ = (V,wϵ) with binary edge weights wϵ = (wϵ,ij) such that

wϵ,ij =

1 for wij > ϵ,

0 otherwise.

The binary matrix wϵ is the adjacency matrix of Gϵ and defines a simplicial complex only using

0-simplices (nodes) and 1-simplices (edges) (H. Lee et al., 2012). We then obtain the graph filtration of
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G as a sequence of nested multiscale binary graphs:

Gϵ0 ⊃ Gϵ1 ⊃ · · · ⊃ Gϵk

with filtration values ϵ0 < ϵ1 < ϵ2 < · · · < ϵk (H. Lee et al., 2011). Figure 2 displays an example of162

graph filtration with four nodes.163

Figure 2. Illustration of a graph filtration with corresponding birth-death decomposition. During the graph filtration, edges are removed one at a time,

starting from the smallest edge weight to the largest. Each edge removal either creates a new connected component (highlighted in red) or eliminates a cycle

(highlighted in blue). The parameter β0, which counts the number of connected components, is monotonically non-decreasing, while β1, which counts the

number of cycles. Thus, the edges can be decomposed into birth and death sets: the birth set corresponds to the maximum spanning tree (MST), and the death

set comprises non-MST edges. The birth set forms the 0D persistence diagram, while the death set forms the 1D persistence diagram.

164

165

166

167

168

Change in the filtration values ϵ may cause the appearance or disappearance of connected components

or loops (M. Chung, Lee, et al., 2019). In a simplicial complex, the number of connected components is

the Betti-0 number β0, and the number of independent cycles (or loops) is the Betti-1 number β1. In

graph filtrations, β0 increases while β1 decreases over filtrations (Figure 2) (M. Chung, Lee, et al., 2019).

During the graph filtration, a connected component that is born never dies; thus, the death time is infinity.
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Consequently, we ignore the death values of connected components and characterize them by a set of

increasing birth values BG:

BG : ϵb1 < · · · < ϵbm0
.

On the other hand, loops are always present in complete graphs, so the birth values of cycles are

considered as −∞ and are ignored. The loops are then completely characterized by a set of increasing

death values DG:

DG : ϵd1 < · · · < ϵdm1
.

Thus, we can decompose edge weights w = (wij) uniquely into either the birth set BG or death set DG

through the birth-death decomposition (Songdechakraiwut & Chung, 2023):

w = BG ∪DG, BG ∩DG ̸= ∅,

where BG = {ϵb1 , ϵb2 , . . . , ϵbm0
} and DG = {ϵd1 , ϵd2 , . . . , ϵdm1

} with m0 = q − 1 and169

m1 = (q − 1)(q − 2)/2. The birth set BG is equivalent to the maximum spanning tree (MST) of G and170

forms the persistent diagram for 0D homology (connected components). On the other hand, the death set171

DG consists of edges that do not belong to the MST and forms the persistent diagram for 1D homology172

(cycles). We compute the Betti-0 curves using Kruskal’s algorithm, which works by identifying the173

minimum spanning tree to construct Betti-0 curves (H. Lee et al., 2012). Betti-1 curves are then identified174

through the Euler characteristic (M. Chung, Lee, et al., 2019; M. K. Chung, Huang, Gritsenko, Shen, &175

Lee, 2019). The computation can be done in O(q2 log q) runtime. The computation is done through176

MATLAB function call [Wb Wd] = WS decompose(W), which inputs the connectivity matrix W177

and outputs the birth set Wb and the death set Wd.178

Wasserstein distances between networks179

The topological distance between persistence diagrams is often measured using the 2-Wasserstein180

distance. For graph filtrations, the persistence diagrams consist of 1D sorted birth or death values. Thus,181

the Wasserstein distance can be computed through order statistics on edge weights (Das, Anand, &182

Chung, 2023; Songdechakraiwut & Chung, 2023).183
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Figure 3. Networks in Groups 2, 3, and 4 are generated by rotating those in Group 1. Since these networks are topologically equivalent, one would not

expect to see any clustering pattern in the distance matrix. However, the distance matrix based on the Euclidean distance (L2-norm) exhibits a clustering

pattern. In contrast, the topological distance, computed using the Wasserstein distance, does not display any such block pattern.

184

185

186

Suppose we have networks Gi = (V,wi) with a fixed node set V = {1, · · · , q}. Let the birth and death187

sets be188

BGi
: ϵib1 < · · · < ϵibm0

, DGi
: ϵid1 < · · · < ϵidm1

.

Then, the 2-Wasserstein distance for 0D homology (connected components) is given by

d0(G1, G2) =

m0∑
i=1

[ϵ1bi − ϵ2bi ]
2.

Similarly, the 2-Wasserstein distance for 1D homology (loops) is given by

d1(G1, G2) =

m1∑
i=1

[ϵ1di − ϵ2di ]
2.
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It is possible to combine 0D and 1D topological distances as

d(G1, G2) = w0d0(G1, G2) + w1d1(G1, G2).

In this study, we will simply use the equal weights w0 = w1 = 1. The 2-Wasserstein distances are189

computed using a MATLAB function call M = WS pdist2(C 1,C 2), which inputs a collection of190

connectivity matrices C 1 of size q × q ×m and C 2 of size q × q × n. q is the number of nodes and m191

and n are the samples in two groups. Then the function outputs structured array dist, where M.D0,192

M.D1 and M.D01 are (m+ n)× (m+ n) pairwise distance matrix for 0D distance d0, 1D distance d1,193

combined distance d = d0 + d1 respectively.194

To see the effect of the Wasserstein distance, we generated 4 circular patterns of identical topology195

(Figure 3). Along the circles, we uniformly sampled 60 nodes and added Gaussian noise N(0, 0.32) on196

the coordinates. We generated 5 random networks per group. The Euclidean distance (L2-norm) between197

randomly generated points are used to build connectivity matrices. Figure 3 displays the superposition of198

nodes from 5 networks in each group. Since they are topologically equivalent, the distance between199

networks should show no clustering pattern. In fact the Wasserstein distance d = d0 + d1 shows no200

discernible clustering pattern while L2-norm shows the clustering pattern. The L2-norm distance is201

particularly large between horizontal (Groups 1 and 2) and vertical patterns (Groups 3 and 4).202

Online topological inference on distance matrix203

Assume we have two groups of networks C1 = {X1, . . . , Xm} and C2 = {Y1, . . . , Yn}. If there is a group204

difference, the topological distances are expected to be relatively small within groups and relatively large205

between groups. The topological distance within the groups is given by206

lW =
∑
i,j

d(Xi, Xj) +
∑
i,j

d(Yi, Yj).

Similarly, the topological distance between the groups is given by207

lB =
∑
i,j

d(Xi, Yj).

Figure 1 shows a schematic of between- and within-group distance computation. Although we restrict the208

inference to a two-sample comparison setting, the inference can be easily generalized to an arbitrary209
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number of groups. We then use the ratio statistic210

ϕ =
lB
lW

for testing the topological difference between the groups of networks. If ϕ is large, the groups differ211

significantly in network topology. If ϕ is small, the group difference is small. Since the distribution of the212

ratio statistic ϕ is unknown, the permutation test is used to determine the empirical distributions. To213

speed up the computation, we adapted a scalable online computation strategy through the transposition214

test as follows (M. Chung, Xie, et al., 2019).215

We first merge two groups and create a distance matrix with dimensions (m+ n)× (m+ n), covering216

all network pairs. Then, we apply a permutation test by shuffling the rows and columns of the distance217

matrix based on permuted group labels. This avoids the need to recalculate distances and speeds up the218

process. To further accelerate the computation, we employ the transposition test, an efficient variant of219

the permutation test (M. Chung, Xie, et al., 2019; Songdechakraiwut & Chung, 2023). In this test, we220

focus on how the within-group lW and between-group lB distances change when we swap only one entry221

from each group through a transposition. Assume we swap the k-th and j-th entries between the groups.222

After each transposition, the within-group distance changes as:223

l′W = lW +∆W ,

where ∆W represents the entries that need to be swapped. This requires swapping only O(m+ n)224

entries, in contrast to the O((m+ n)2) entries needed in a standard permutation test. Similarly, the225

between-group distance changes as:226

l′B = lB +∆B.

The ratio statistic is then updated sequentially over random transpositions from ϕ = lB/lW to227

ϕ′ = l′B/l
′
W . The algebraic details on ∆W and ∆B are given in (Songdechakraiwut & Chung, 2023).228

In numerical implementation, to mitigate potential bias and hasten convergence, we intersperse a full229

permutation among every 1000 transpositions. Figure 4 shows distributions of within- and230

between-group distance and the convergence plot of the transposition test. Our approach does not assume231

any specific distribution for the test statistic, making it robust against varying variances between groups.232

Like the standard permutation test, the transposition test approximates the null distribution of the test233
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Figure 4. The distribution of within- and between-group distances obtained from Jackknife resampled structural covariance networks. The within- and

between-group distances are statistically independent and thus we can compute the Z-statistic out of the distances.

237

238

statistic, allowing us to quantify deviations in the observed data from the null distribution (Bullmore et234

al., 1999; M. Chung, Wang, Huang, & Lyu, 2018; Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004;235

Nichols & Holmes, 2002).236

Z-statistic between between- and within-group distances239
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We can also develop a Z-test like parametric test procedure based on a Gaussian distribution testing240

difference in the between- and within-group distances. Let LW be a pairwise within-group distance,241

which is random, realized by every possible d(Xi, Xj). Let LB be a pairwise between-group distance,242

which is random, realized by every possible d(Xi, Yj). Then the average pairwise within-group distance243

is given by244

ELW =

∑
i,j d(Xi, Xj) +

∑
i,j d(Yi, Yj)

m(m− 1) + n(n− 1)
.

The second moment of LW is given by245

EL2
W =

∑
i,j d

2(Xi, Xj) +
∑

i,j d
2(Yi, Yj)

m(m− 1) + n(n− 1)
.

The variance is given by VLW = EL2
W − (ELW )2. Similarly, the average pairwise between-group246

distance is given by247

ELB =

∑
i,j d(Xi, Yj)

mn
.

The second moment is given by248

EL2
B =

∑
i,j d

2(Xi, Yj)

mn
.

The variance is given by VLB = EL2
B − (ELB)

2. Assuming two groups C1 and C2 are independent249

samples, the distances d(Xi, Xj) and d(Ye, Yf ) are independent. The distance d(Xi, Xj) is also250

conditionally independent of d(Xi, Yf ) over fixed Xi. Since we have the conditional independence for251

every possible Xi ∈ C1, d(Xi, Xj) and d(Xi, Yf ) are independent. Following the similar logic, d(Xi, Xj)252

and d(Xe, Yf ) are also independent.253

Subsequently, the within- and between group distances are independent. Then the Z-statistic of two

independent random variables LB and and LW is given by

Z =
LB − LW − (ELB − ELW )√

VLB

mn
+ VLW

m(m−1)+n(n−1)

Then we are testing the null hypothesis

H0 : ELB = ELW

against the alternative

H1 : ELB ≥ ELW .
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The between-group distance is expected to be larger than the within-group distance. Under the null254

hypothesis, Z should asymptotically follow the standard normal distribution N(0, 1). Figure 4 displays255

the distributions of within- and between-group distances for each topological distance used in our study.256

APPLICATION

Imaging data and pre-processing257

The study included 23 children who suffered maltreatment in early life, and 31 age matched typically258

developing comparison children (M. K. Chung et al., 2013, 2015; Hanson et al., 2013). All subjects were259

scanned at the University of Wisconsin-Madison. The maltreated sample suffered early childhood neglect260

as they were initially raised in institutional setting; in such settings, there is a lack of toys or simulation,261

unresponsive caregiving, and an overall dearth of individualized care and attention (Rutter et al., 1998).262

These children were, however, then adopted and then move into normative caregiving environments. For263

the controls, we selected children without a history of maltreatment from families with similar ranges of264

socioeconomic statuses. The exclusion criteria include, among many others, congenital abnormalities265

(e.g., Down syndrome or cerebral palsy) and fetal alcohol syndrome (FAS). The average age for266

maltreated children was 11.26 ± 1.71 years while that of controls was 11.58 ± 1.61 years. This particular267

age range was selected since this development period is characterized by major regressive and268

progressive brain changes (Hanson et al., 2013; Lenroot & Giedd, 2006). There are 10 boys and 13 girls269

in the maltreated group and 18 boys and 13 girls in the control group. Groups did not statistically differ270

on age, pubertal stage, sex, or socio-economic status (Hanson et al., 2013). The average amount of time271

spent in institutional care by children was 2.5 years ± 1.4 years, with a range from 3 months to 5.4 years.272

Children were on average 3.2 years old ± 1.9 months when they were adopted, with a range of 3 months273

to 7.7 years. T1-weighted MRI were collected using a 3T General Electric SIGNA scanner (Waukesha,274

WI) with a quadrature birdcage head coil. DTI were also collected in the same scanner using a275

cardiac-gated, diffusion-weighted, spin-echo, single-shot, EPI pulse sequence (Hanson et al., 2013).276

Diffusion tensor encoding was achieved using twelve optimum non-collinear encoding directions with a277

diffusion weighting of 1114 s/mm2 and a non-DW T2-weighted reference image. Other imaging278

parameters were TE = 78.2 ms, 3 averages (NEX: magnitude averaging), and an image acquisition matrix279

of 120 × 120 over a field of view of 240 × 240 mm2. The acquired voxel size of 2× 2× 3 mm was280
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Figure 5. 548 uniformly sampled nodes along the white matter surface. The nodes are sparsely sampled on the template white matter surface to guarantee

there is no spurious high correlation due to proximity between nodes. The same nodes are taken in both MRI and DTI for comparison between the two

modalities. Bottom: curves are extracted white matter fiber tracts from a subject.

284

285

286

interpolated to 0.9375 mm isotropic dimensions (256 × 256 in plane image matrix). To minimize field281

inhomogeneity and image artifacts, high order shimming and field map images were collected using a282

pair of non-EPI gradient echo images at two echo times: TE1 = 8 ms and TE2 = 11 ms.283

For T1-MRI, a study specific template was constructed using the diffeomorphic shape and intensity287

averaging technique through Advanced Normalization Tools (ANTS) (Avants, Epstein, Grossman, &288

Gee, 2008). Image normalization of each individual image to the template was done using symmetric289

normalization with cross-correlation as the similarity metric. The 1mm resolution inverse deformation290

fields are then smoothed out with a Gaussian kernel of 4mm (full width at half maximum, FWHM). The291

Jacobian determinants of the inverse deformations from the template to individual subjects were292

computed at each voxel. The Jacobian determinants measure the amount of voxel-wise change from the293

template to the individual subjects (M. K. Chung et al., 2001). For diffusion-MRI, images were corrected294
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for eddy current related distortion and head motion via FSL software and distortions from field295

inhomogeneities were corrected using custom software based on the method given in (Jezzard & Clare,296

1999) before performing a non-linear tensor estimation using CAMINO (Camino, 2006). Subsequently,297

we have used iterative tensor image registration strategy for spatial normalization using DTI-ToolKit298

(Joshi, Davis, Jomier, & Gerig, 2004; Zhang et al., 2007). Then fractional anisotropy (FA) values were299

calculated for diffusion tensor volumes diffeomorphically registered to the study specific template.300

White matter was segmented into tissue probability maps using template-based priors and then301

registered to a study-specific template (Bonner & Grossman, 2012; M. Chung et al., 2015). We302

thresholded the white matter density at a value of 0.7 to obtain an isosurface, which is located within the303

white matter rather than at the boundary between gray and white matter. Our interest lies in detecting304

changes along this surface close to the actual tissue boundary. This isosurface was represented as a305

triangle mesh with 189,536 vertices, resulting in an average inter-nodal distance of 0.98 mm. Given the306

high correlation between Jacobian determinants and FA values at neighboring voxels, we uniformly307

sampled the mesh vertices to yield q = 548 nodes, which produced an average inter-nodal distance of308

15.7 mm. This distance is sufficiently large to avoid spuriously high correlations between adjacent nodes309

(see Figure 5). Subsequently, we computed 548× 548 sample correlation matrices across subjects.310

Functional parcellations such as those by Gordon (Gordon et al., 2016) and Schaefer (Schaefer et al.,311

2017) are primarily based on fMRI studies and may not be well-suited for structural covariance networks,312

which operate at higher spatial resolutions based on anatomical measurements. Furthermore, many313

existing parcellations focus mainly on gray matter, where DTI measurements such as FA can be difficult314

to estimate reliably. White matter tracts, reconstructed using tractography algorithms, do not consistently315

extend all the way to the gray matter, making it challenging to robustly estimate FA values from DTI in316

these regions (Maier-Hein et al., 2017).317

Structural connectivity analysis322

Tractography was performed in the normalized space using the TEND algorithm and warped into the323

study template (Lazar et al., 2003). We utilized the Anatomical Automatic Labeling (AAL) atlas with324

116 parcellations (Tzourio-Mazoyer et al., 2002). This atlas was registered to the study template via325

diffeomorphic image registration. The endpoints of fiber tracts were identified with respect to these 116326
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Figure 6. Top: The average structural connectivity in maltreated children compared to normal controls. Bottom: Individual Betti curves for each subject are

displayed. The thick red and blue curves represent the average Betti curves for the maltreated and control groups, respectively. Given that structural connectivity

predominantly forms a single, large connected tree, there is minimal variation in the topological profiles. Thus, no statistically significant topological differences

were detected between the groups.

318

319

320

321

parcellations, and tracts passing between parcellations were counted. Tracts not passing through two327

given parcellations were excluded. We applied the proposed topological inference methods to the328
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resulting structural connectivity matrices (Figure 6). The transposition test was conducted with 1 million329

transpositions. To accelerate convergence and mitigate potential bias, one permutation was introduced for330

every sequence of 1000 consecutive transpositions. We did not observe any statistically significant331

topological differences between the groups. All three topological distances d0, d1, and d0 + d1 yielded332

p-values of 0.56, 0.34, and 0.57, respectively.333

Structural connectivity is characterized predominantly by a single, large connected component with334

few loops (M. Chung, Adluru, Dalton, Alexander, & Davidson, 2011). We found that 96% of all nodes335

formed a single gigantic connected tree. Thus, structural connectivity is primarily characterized by 0D336

homology, highlighting the deterministic and hierarchical nature of anatomical pathways between brain337

regions. Given trees with an identical number of nodes, they are all topologically equivalent. The direct338

application of TDA methods to structural connectivity matrices, therefore, diminishes statistical power.339

For example, consider two different trees T1 and T2 with the same q number of nodes but with sorted,

identical edge weights

w(1) < w(2) < · · · < w(q−1).

When performing graph filtrations on these trees, the resulting 0D and 1D persistence diagrams will be

identical. The best topological matching between T1 and T2 is simply given by matching the i-th smallest

birth values together. Consequently, the 2-Wasserstein distances vanish, i.e.,

d0(T1, T2) = d1(T1, T2) = 0,

making it impossible to distinguish between the trees.340

Structural covariance network analysis341

We sequentially thresholded the correlation matrices to obtain graph filtrations. Figure 7 displays the342

thresholded structural covariance networks at correlation values 0.5, 0.6, 0.7 and 0.8. These networks343

reveal strongly correlated connections in maltreated children, indicating a highly homogeneous nature of344

white matter structures in this group. Higher correlation values would be expected if FA and Jacobian345

determinants are homogeneous within each group.346

Since there are only one correlation matrix per group, this gives a challenge in group level topological347

inference. Thus, we adapted the leave-one-out Jackknife resampling to generate multiple correlation348
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matrices per group as follows. There are m =31 normal controls and n =23 maltreated children in our349

sample. For the normal controls, we leave the i-th subject out and compute the group-level correlation350

matrix using the remaining 30 subjects, denoting this matrix as Xi. This process is repeated for all351

subjects to obtain the structural covariance networks X1, . . . , Xm. Similarly, for the maltreated children,352

we leave the i-th subject out and compute the group-level correlation matrix using the remaining 22353

subjects, denoting this as Yi. This process is repeated to obtain Y1, . . . , Yn. These resampled correlation354

matrices are then feed into the proposed topological data analysis.355

Using the resampled correlation matrices of the Jacobian determinants and fractional anisotropy (FA)359

values on 548 nodes, we calculated both the Betti-0 and Betti-1 curves for all subjects (Figure 8). For the360

same filtration values, the Betti-0 curves indicated higher values, i.e., more connected components, in the361

control group compared to the maltreated group. This observation implies that brain regions in the362

control group are less correlated across different regions, suggesting a more heterogeneous anatomical363

structure. This is in contrast to the maltreated group, which exhibited higher Betti-0 curves in the364

tractography-based connectivity study in the previous section. This suggests a less fractured and more365

interconnected network in the control group.366

On the other hand, the Betti-1 curves for the maltreated group were higher than those for the control367

group (Figure 8). This indicates that maltreated children have more loops, which can only occur if there368

are denser and more higher correlations in their structural covariance networks. This again points to a369

more homogeneous nature of the structural covariance networks in maltreated children. The pattern is370

reversed in the tractography-based connectivity study, where lower Betti-1 curves are observed for the371

maltreated group. While the loops in the structural covariance networks are statistical in nature, the loops372

in tractography-based connectivity represent actual physical connections. In summary, by employing373

Betti-0 and Betti-1 curves, we are able to visualize and characterize the topological differences between374

the maltreated and control groups, particularly in terms of connected components and loops. These Betti375

curves may serve as potential biomarkers for distinguishing between maltreated subjects and the control376

group.377

To more rigorously quantify the topological differences, we used the Wasserstein distance based ratio380

statistic. First, we performed the Jackknife resampling. Then computed the between-group and381

within-group Wasserstein distances using d0 , d1 and d0 + d1. Figure 4 displays the distribution of382
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Figure 7. Structural covariance networks on 548 nodes, generated from fractional anisotropy (FA) values derived from DTI and Jacobian determinants

derived from T1-MRI. The networks are thresholded at values of 0.5, 0.6, 0.7, and 0.8, shown from top to bottom. The color bar represents the correlation

values for each edge.

356

357

358
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Figure 8. The Betti curves are derived from the Jackknife-resampled structural covariance networks for both the Jacobian determinants (left) and FA-values

(right). Compared to the Jacobian determinants, the FA-values exhibit significantly less variability in their topological profiles.

378

379

between-group and within-group Wasserstein distances. We notice a significant distinction between the383

Jackknife resampled Betti curves of both groups which is much larger than within-group variability using384

all three d0, d1, and d0 + d1 distances and reveals the between group difference is highly significant.385

Figure 4 clearly shows that the variability between groups is far larger than within-group variability. The386

p-values are very small (p-value < 0.001) for d0, d1, and d0 + d1 for both Jacobian determinants and FA387

values. We conclude that there are significant topological differences in the topological structure of MRI388

and DTI structural covariance networks. Note our ratio test statistic is global test procedure over the389

range of filtration values and space so there in no need for multiple comparisons.390

We also performed the parametric Z-test. Figure 4 displays the distributions of within- and391

between-group distances for the topological distances d0, d1, and d = d0 + d1 used in our study. The392

distribution of the Z-statistic is also displayed for each distance. We evaluated the normality of the393

Z-statistic under the null hypothesis using the Kolmogorov-Smirnov (KS) test, which is a non-parametric394

statistical test used to compare a sample distribution with a reference probability distribution (Conover,395

1980; Gibbons & Chakraborti, 2011). The statistical significance for all distance metrics were below396

0.001, indicating a high likelihood that the Z-statistic follows a normal distribution. Therefore, we can397
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proceed with parametric tests based on the normal distribution. The resulting p-values were all below398

0.001, indicating statistically significant differences between the groups for all distance metrics.399

DISCUSSION

To investigate the topological impact of maltreatment on brain networks, we applied TDA methods to400

structural covariance networks. We observed fewer disconnected components in maltreated children401

compared to controls (Figure 7). This may be attributed to the higher anatomical homogeneity observed402

in the white matter structure of maltreated children. (Hanson et al., 2013) also noted disrupted white403

matter organization in neglected children, which resulted in more diffused connections between brain404

regions. This will likely increase anatomical homogeneity across brain regions. Our topology-based405

approach successfully revealed these alterations and suggests that TDA could serve as a biomarker for406

identifying the neurobiological impacts of maltreatment (Besthorn, Sattel, Geiger-Kabisch, Zerfass, &407

Förstl, 1995; Dastgheib, Lithgow, & Moussavi, 2011; Gómez, Mediavilla, Hornero, Abásolo, &408

Fernández, 2009; Jeong, 2004).409

The maltreatment and malnutrition often co-occur, typically in the form of neglect. For instance, a410

caregiver might intentionally or unintentionally fail to provide adequate nutrition, leading to malnutrition411

and a range of developmental, psychological, and health issues (Aber & Cicchetti, 1984; Baer &412

Martinez, 2006). Neglect is often the predominant form of maltreatment leading to malnutrition, making413

malnourished children more susceptible to illness, developmental delays, and in extreme cases, death414

(Perez & Widom, 1994). Both maltreatment and malnutrition can have severe and often synergistic415

neurodevelopmental consequences, affecting regions of the brain responsible for cognitive function and416

emotional regulation (Teicher, Anderson, Ohashi, & Polcari, 2014; Teicher, Samson, Anderson, &417

Ohashi, 2016). (Teicher et al., 2014) employed structural covariance network analysis using cortical418

thickness and considered various nodal centrality measures like degree, betweenness, closeness, and419

eigenvector. The study observed a significant decrease in nodal centralities across most brain regions,420

except for an increase in the right anterior insular gyrus and right precuneus gyrus. An increase in421

correlation in structural covariance networks could lead to an increased degree centrality if new edges are422

formed or existing edges are strengthened. (M. Chung et al., 2017) conducted a study using DTI to423

examine the probability distribution of node degrees in maltreated children. The study revealed that424
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maltreated children tend to have a higher concentration of low-degree nodes and fewer hub nodes when425

compared to controls. This observation is consistent with a potential increase in the Betti-0 number in the426

DTI connectivity of maltreated children. This finding contrasts with the higher correlations observed in427

structural covariance networks in the currently. However, if there is a consistently higher level of428

correlation leading to homogeneous measurements across all brain regions, such a discrepancy can occur.429

(Puetz et al., 2017) found that maltreated children show significant reductions in global connectivity430

strength and local connectivity, along with increased path lengths. High correlations in structural431

covariance networks usually translate into more numerous connections between nodes. This creates more432

direct routes from one node to another, reducing the need for intermediate steps and thereby shortening433

the average path length.434

Persistent homology offers several strengths for neuroimaging research. PH provides a multi-scale435

framework that allows for the study of brain networks at various resolutions (H. Lee et al., 2012). Unlike436

traditional approaches that rely on a fixed threshold for connectivity, PH accounts for a range of scales,437

thereby offering a more comprehensive view of brain topology. PH is sensitive to subtle topological438

differences between networks, making it particularly useful for identifying early markers of neurological439

diseases and conditions (M. Chung, Lee, et al., 2019). Further, PH does not make strong assumptions440

about the underlying statistical distribution, making it more robust to noise and artifacts commonly441

encountered in imaging studies. However, PH is not without its limitations. The computation of442

persistent homology can be computationally expensive, particularly for large and complex networks443

(A. Zomorodian & Carlsson, 2005). This computational burden may limit its applicability in real-time or444

large-scale brain imaging studies. PH can sometimes be too sensitive to small topological features that445

may not be of clinical relevance. The interpretation of PH features, such as Betti numbers and persistence446

diagrams, can be challenging without a strong mathematical background, which may limit its widespread447

adoption in the clinical setting. Future work on PH may focus on optimizing the computational aspects of448

PH and developing user-friendly software tools to promote its application in clinical research. Integrating449

PH with other machine learning approaches could further refine our understanding of complex brain450

networks.451

To develop a clinically accurate diagnostic tool from TDA, we need to extended our study to a larger452

population size, such as the Adolescent Brain Cognitive Development (ABCD) database, the largest453
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long-term study of brain development and child health in US with more than 100 psychiatric and 11454

cognitive measures. In the ABCD database, youth (n =11,875) 9-11 years of age were recruited for the455

study. This age range is important as it is a period of development critical to an individual’s life trajectory.456

The incidence of psychiatric illnesses, such as attention deficit hyperactivity disorder (ADHD), anxiety,457

mood disorders, and psychosis, increases through adolescence (Paus, Keshavan, & Giedd, 2008). The458

application of our methods to larger datasets such as the ABCD database is left as a future study.459
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TECHNICAL TERMS

Structural Covariance refers to the statistical relationship in morphological metrics, such as cortical703

thickness or volume, between different regions of the brain. This concept, often utilized in neuroimaging704

studies, was first introduced by Keith Worsley in 2005 (K. Worsley et al., 2005; K. J. Worsley, Charil, et705

al., 2005). It is instrumental in understanding how different brain areas co-vary in their structural706

attributes across a population. By examining the extent to which the anatomy of one brain region is707

related to that of another, structural covariance analysis can reveal patterns of connectivity or708

co-development.709

Brith-Death Decomposition involves simplifying a weighted graph (the brain network) through graph710

filtration, where edges are sequentially deleted based on sorted edge weights (Songdechakraiwut &711

Chung, 2023). It reveals how network features like connected components and loops appear (birth) or712

disappear (death). Births occur when new components emerge. Loops are present from the start and are713

characterized by their death. The decomposition divides edges into a birth set, which contributes to the714

formation of new components, and a death set, which completes loops.715

The Wasserstein Distance is a metric that quantifies the dissimilarity between two probability716

distributions, drawing from the theory of optimal transport. This theory seeks the most efficient way to717

transform one distribution into another. In the context of persistent homology, the Wasserstein Distance is718

particularly valuable for measuring topological discrepancies between features across various filtrations.719

For the graph filtration, its capacity for scalable computations makes it an essential tool in the analysis of720

complex data structures (M. Chung et al., 2023).721

The Jacobian Determinant is a key metric in tensor-based morphometry (TBM) for analyzing local722

volume changes in brain structures. In TBM, brain images from different individuals are nonlinearly723

mapped onto a common template to identify anatomical variations. The Jacobian determinant is724

calculated at each voxel of the transformed image, reflecting the local volumetric change at that voxel in725

comparison to the template. A Jacobian determinant value greater than one signifies local expansion,726

whereas a value less than one indicates local contraction (M. Chung et al., 2001).727
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